Hindi Version of the Ques with Green background are available only
##### objective Ques (248 results)
11)

If x = $$\sqrt{1+\frac{\sqrt{3}}{2}-}\sqrt{1-\frac{\sqrt{3}}{2}}$$, then the value of$$\frac{\sqrt{2}-x}{\sqrt{2}+x}$$ will be closest to:

SSC CGL 2019
A)

0.17

B)

0.12

C)

1.4

D)

1.2

12)

If $$a^3 + b^3 = 218$$ and a + b = 2, then the value of ab is:

SSC CGL 2019
A)

34

B)

-35

C)

-31

D)

32

13)

If $$2\sqrt{2}x^3-3\sqrt{3}y^3=$$$$\left(\sqrt{2}x-\sqrt{3}y\right)$$$$\left(Ax^2+By^2+Cxy\right)$$, then the value of $$( A^2 + B^2 - C^2 )$$ is:

SSC CGL 2019
A)

11

B)

7

C)

19

D)

10

14)

ab(a - b) + bc(b - c) + ca(c - a) is equal to :

SSC CGL 2019
A)

(a + b)(b - c)(c - a)

B)

(a - b)(b + c)(c - a)

C)

(a - b)(b - c)(c - a)

D)

(b - a)(b - c)(c - a)

15)

Given that $$(5x-3)^3+(2x+5)^3$$$$+27(4-3x)^3=$$$$9(3-5x)$$$$(2x+5)$$$$(3x-4)$$, then the value of (2x + 1) is:

SSC CGL 2019
A)

-13

B)

15

C)

-15

D)

13

16)

If $$5\sqrt5x^3+2\sqrt2y^3=$$$$(Ax+\sqrt2y)$$$$(Bx^2+2y^2+Cxy)$$, then the value of $$(A^2+B^2-C^2)$$ is :

SSC CGL 2019
A)

15

B)

20

C)

30

D)

40

17)

The value of $${2\sqrt{10}\over\sqrt{5}+\sqrt{2}-\sqrt{7} }$$$$-{\sqrt{\sqrt{5}-2\over\sqrt{5}+2}}$$$$-{3\over\sqrt{7}-2}$$ is :

SSC CGL 2019
A)

$$2 +\sqrt2$$

B)

$$2\sqrt5$$

C)

$$\sqrt2$$

D)

$$\sqrt7$$

18)

If  $${3(x^2+1)-7x\over3x}=6$$$$x\neq0$$, then the value of $$\sqrt x+{1\over\sqrt x}$$ is :

SSC CGL 2019
A)

$$\sqrt{25\over3}$$

B)

$$\sqrt {11\over3}$$

C)

$$\sqrt{35\over3}$$

D)

$$\sqrt{31\over3}$$

19)

a, b and c are three fractions such that a < b < c. If c is divided by a, the result is $$9\over2$$, which exceeds b by $$23\over6$$. The sum of a, b and c is $$19\over12$$. What is the value of (2a + b - c)?

SSC CGL 2019
A)

$$1\over2$$

B)

$$1\over3$$

C)

$$1\over12$$

D)

$$1\over4$$

20)

Let $$x=\sqrt {27}-\sqrt{6\frac{3}{4}}$$ and $$y={\sqrt {45}+\sqrt{605}+\sqrt{245}\over\sqrt {80} +\sqrt{125}}$$, then the value of $$(x^2+y^2)$$ is :

SSC CGL 2019
A)

$$223\over36$$

B)

$$221\over36$$

C)

$$221\over9$$

D)

$$227\over9$$

showing 11 - 20 results of 248 results